Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus.

نویسندگان

  • Zhongyang Tan
  • Adrian J Gibbs
  • Yasuhiro Tomitaka
  • Flora Sánchez
  • Fernando Ponz
  • Kazusato Ohshima
چکیده

The genetic basis for virulence in potyviruses is largely unknown. Earlier studies showed that there are two host types of Turnip mosaic virus (TuMV); the Brassica/Raphanus (BR)-host type infects both Brassica and Raphanus systemically, whereas the Brassica (B)-host type infects Brassica fully and systemically, but not Raphanus. The genetic basis of this difference has been explored by using the progeny of an infectious clone, p35Tunos; this clone is derived from the UK1 isolate, which is of the B-host type, but rarely infects Raphanus systemically and then only asymptomatically. Two inocula from one such infection were adapted to Raphanus by passaging, during which the infectivity and concentration of the virions of successive infections increased. The variant genomes in the samples, 16 in total, were sequenced fully. Four of the 39 nucleotide substitutions that were detected among the Raphanus sativus-adapted variant genomes were probably crucial for adaptation, as they were found in several variants with independent passage histories. These four were found in the protein 1 (P1), protein 3 (P3), cylindrical inclusion protein (CI) and genome-liked viral protein (VPg) genes. One of four 'parallel evolution' substitutions, 3430G-->A, resulted in a 1100Met-->Ile amino acid change in the C terminus of P3. It seems likely that this site is important in the initial stages of adaptation to R. sativus. Other independent substitutions were mostly found in the P3, CI and VPg genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient expression of green fluorescent protein in radish (Raphanus sativus) using a turnip mosaic virus based vector

It is possible to use transgenic plants, as bioreactors, for the production of recombinant inexpensive chemicals and drug components. Transient gene expression is an appropriate alternative to stable transformation because it allows an inexpensive and rapid method for expression of recombinant proteins in plant tissues. In recent years, plant viral vectors have been increasingly developed as su...

متن کامل

Evolutionary trajectory of turnip mosaic virus populations adapting to a new host.

Little is known about how some plant viruses establish successful cross-species transmission whilst others do not; the genetic basis for adaptation is largely unknown. This study investigated the genetic changes that occurred using the progeny of an infectious clone, p35Tunos, derived from the turnip mosaic virus (TuMV) UK 1 isolate, which has a Brassica host type, but rarely infects Raphanus s...

متن کامل

An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein.

Turnip mosaic virus (TuMV, genus Potyvirus, family Potyviridae) infects mainly cruciferous plants. Isolates Tu-3 and Tu-2R1 of TuMV exhibit different infection phenotypes in cabbage (Brassica oleracea L.) and Japanese radish (Raphanus sativus L.). Infectious full-length cDNA clones, pTuC and pTuR1, were constructed from isolates Tu-3 and Tu-2R1, respectively. Progeny virus derived from infectio...

متن کامل

Molecular Characterization of the Complete Genome of Three Basal-BR Isolates of Turnip mosaic virus Infecting Raphanus sativus in China

Turnip mosaic virus (TuMV) infects crops of plant species in the family Brassicaceae worldwide. TuMV isolates were clustered to five lineages corresponding to basal-B, basal-BR, Asian-BR, world-B and OMs. Here, we determined the complete genome sequences of three TuMV basal-BR isolates infecting radish from Shandong and Jilin Provinces in China. Their genomes were all composed of 9833 nucleotid...

متن کامل

The infectivities of turnip yellow mosaic virus genomes with altered tRNA mimicry are not dependent on compensating mutations in the viral replication protein.

Five highly infectious turnip yellow mosaic virus (TYMV) genomes with sequence changes in their 3'-terminal regions that result in altered aminoacylation and eEF1A binding have been studied. These genomes were derived from cloned parental RNAs of low infectivity by sequential passaging in plants. Three of these genomes that are incapable of aminoacylation have been reported previously (J. B. Go...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general virology

دوره 86 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005